

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Pydenticon 0.2 documentation

Pydenticon documentation

[image: _images/pydenticon.png]
[image: _images/pydenticon_inverted.png]
Pydenticon is a small utility library that can be used for deterministically
generating identicons based on the hash of provided data.

The implementation is a port of the Sigil identicon implementation from:

	https://github.com/cupcake/sigil/

Support

In case of problems with the library, please do not hestitate to contact the
author at pydenticon (at) majic.rs. The library itself is hosted on Github,
and on author’s own websites:

	https://github.com/azaghal/pydenticon

	https://code.majic.rs/pydenticon

	https://projects.majic.rs/pydenticon

Contents:

	About Pydenticon
	Why was this library created?

	Features

	Installation
	Requirements

	Using pip

	Manual installation

	Usage
	Instantiating a generator

	Generating identicons

	Using the generated identicons

	Full example

	Algorithm
	Examples

	Limitations

	Privacy

	API Reference

	Testing

	Release Notes
	0.2

	0.1.1

	0.1

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Branko Majic.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pydenticon 0.2 documentation

About Pydenticon

Pydenticon is a small utility library that can be used for deterministically
generating identicons based on the hash of provided data.

The implementation is a port of the Sigil identicon implementation from:

	https://github.com/cupcake/sigil/

Why was this library created?

A number of web-based applications written in Python have a need for visually
differentiating between users by using avatars for each one of them.

This functionality is particularly popular with comment-posting since it
increases the readability of threads.

The problem is that lots of those applications need to allow anonymous users to
post their comments as well. Since anonymous users cannot set the avatar for
themselves, usually a random avatar is created for them instead.

There is a number of free (as in free beer) services out there that allow web
application developers to create such avatars. Unfortunately, this usually means
that the users visiting websites based on those applications are leaking
information about their browsing habits etc to these third-party providers.

Pydenticon was written in order to resolve such an issue for one of the
application (Django Blog Zinnia, in particular), and to allow the author to set
up his own avatar/identicon service.

Features

Pydenticon has the following features:

	Compatible with Sigil implementation (https://github.com/cupcake/sigil/) if
set-up with right parameters.

	Creates vertically symmetrical identicons of any rectangular shape and size.

	Uses digests of passed data for generating the identicons.
* Automatically detects if passed data is hashed already or not.
* Custom digest implementations can be passed to identicon generator (defaults
to ‘MD5’).

	Support for multiple image formats.
* PNG
* ASCII

	Foreground colour picked from user-provided list.

	Background colour set by the user.

	Ability to invert foreground and background colour in the generated identicon.

	Customisable padding around generated identicon using the background colour
(foreground if inverted identicon was requested).

 Copyright 2013, Branko Majic.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pydenticon 0.2 documentation

Installation

Pydenticon can be installed through one of the following methods:

	Using pip, which is the easiest and recommended way for production websites.

	Manually, by copying the necessary files and installing the dependencies.

Requirements

The main external requirement for Pydenticon is Pillow [http://python-imaging.github.io/], which is used for generating the images.

Using pip

In order to install latest stable release of Pydenticon using pip, run the
following command:

pip install pydenticon

In order to install the latest development version of Pydenticon from Github,
use the following command:

pip install -e git+https://github.com/azaghal/pydenticon#egg=pydenticon

Manual installation

If you wish to install Pydenticon manually, make sure that its dependencies have
been met first, and then simply copy the pydenticon directory (that contains
the __init__.py file) somewhere on the Python path.

 Copyright 2013, Branko Majic.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pydenticon 0.2 documentation

Usage

Pydenticon provides simple and straightforward interface for setting-up the
identicon generator, and for generating the identicons.

Instantiating a generator

The starting point is to create a generator instance. Generator implements
interface that can be used for generating the identicons.

In its simplest form, the generator instances needs to be passed only the size
of identicon in blocks (first parameter is width, second is height):

Import the library.
import pydenticon

Instantiate a generator that will create 5x5 block identicons.
generator = pydenticon.Generator(5, 5)

The above example will instantiate a generator that can be used for producing
identicons which are 5x5 blocks in size, using the default values for digest
(MD5), foreground colour (black), and background colour (white).

Alternatively, you may choose to pass in a different digest algorithm, and
foreground and background colours:

Import the libraries.
import pydenticon
import hashlib

Set-up a list of foreground colours (taken from Sigil).
foreground = ["rgb(45,79,255)",
 "rgb(254,180,44)",
 "rgb(226,121,234)",
 "rgb(30,179,253)",
 "rgb(232,77,65)",
 "rgb(49,203,115)",
 "rgb(141,69,170)"]

Set-up a background colour (taken from Sigil).
background = "rgb(224,224,224)"

Instantiate a generator that will create 5x5 block identicons using SHA1
digest.
generator = pydenticon.Generator(5, 5, digest=hashlib.sha1,
 foreground=foreground, background=background)

Generating identicons

With generator initialised, it’s now possible to use it to create the
identicons.

The most basic example would be creating an identicon using default padding (no
padding) and output format (“png”), without inverting the colours (which is also
the default):

Generate a 240x240 PNG identicon.
identicon = generator.generate("john.doe@example.com", 240, 240)

The result of the generate() method will be a raw representation of an
identicon image in requested format that can be written-out to file, sent back
as an HTTP response etc.

Usually it can be nice to have some padding around the generated identicon in
order to make it stand-out better, or maybe to invert the colours. This can be
done with:

Set-up the padding (top, bottom, left, right) in pixels.
padding = (20, 20, 20, 20)

Generate a 200x200 identicon with padding around it, and invert the
background/foreground colours.
identicon = generator.generate("john.doe@example.com", 200, 200,
 padding=padding, inverted=True)

Finally, the resulting identicons can be in different formats:

Create identicon in PNG format.
identicon_png = generator.generate("john.doe@example.com", 200, 200,
 output_format="png")
Create identicon in ASCII format.
identicon_ascii = generator.generate("john.doe@example.com", 200, 200,
 output_format="ascii")

Using the generated identicons

Of course, just generating the identicons is not that fun. They usually need
either to be stored somewhere on disk, or maybe streamed back to the user via
HTTP response. Since the generate function returns raw data, this is quite easy
to achieve:

Generate same identicon in two different formats.
identicon_png = generator.generate("john.doe@example.com", 200, 200,
 output_format="png")
identicon_ascii = generator.generate("john.doe@example.com", 200, 200,
 output_format="ascii")

Identicon can be easily saved to a file.
f = open("sample.png", "wb")
f.write(identicon_png)
f.close()

ASCII identicon can be printed-out to console directly.
print identicon_ascii

Full example

Finally, here is a full example that will create a number of identicons and
output them in PNG format to local directory:

#!/usr/bin/env python

Import the libraries.
import pydenticon
import hashlib

Set-up some test data.
users = ["alice", "bob", "eve", "dave"]

Set-up a list of foreground colours (taken from Sigil).
foreground = ["rgb(45,79,255)",
 "rgb(254,180,44)",
 "rgb(226,121,234)",
 "rgb(30,179,253)",
 "rgb(232,77,65)",
 "rgb(49,203,115)",
 "rgb(141,69,170)"]

Set-up a background colour (taken from Sigil).
background = "rgb(224,224,224)"

Set-up the padding (top, bottom, left, right) in pixels.
padding = (20, 20, 20, 20)

Instantiate a generator that will create 5x5 block identicons using SHA1
digest.
generator = pydenticon.Generator(5, 5, foreground=foreground,
 background=background)

for user in users:
 identicon = generator.generate(user, 200, 200, padding=padding,
 output_format="png")

 filename = user + ".png"
 with open(filename, "wb") as f:
 f.write(identicon)

 Copyright 2013, Branko Majic.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pydenticon 0.2 documentation

Algorithm

A generated identicon can be described as one big rectangle divided into rows
x columns rectangle blocks of equal size, where each block can be filled with
the foreground colour or the background colour. Additionally, the whole
identicon is symmetrical to the central vertical axis, making it much more
aesthetically pleasing.

The algorithm used for generating the identicon is fairly simple. The input
arguments that determine what the identicon will look like are:

	Size of identicon in blocks (rows x columns).

	Algorithm used to create digests out of user-provided data.

	List of colours used for foreground fill (foreground colours). This list will
be referred to as foreground_list.

	Single colour used for background fill (background colour). This colour wil be
referred to as background.

	Whether the foreground and background colours should be inverted (swapped) or
not.

	Data passed to be used for digest.

The first step is to generate a digest out of the passed data using the
selected digest algorithm. This digest is then split into two parts:

	The first byte of digest (f, for foreground) is used for determining the
foreground colour.

	The remaining portion of digest (l, for layout) is used for determining
which blocks of identicon will be filled using foreground and background
colours.

In order to select a foreground colour, the algorithm will try to determine
the index of the colour in the foreground_list by doing modulo division of
the first byte’s integer value with number of colours in
foreground_list:

foreground = foreground_list[int(f) % len(foreground_list)]

The layout of blocks (which block gets filled with foreground colour, and which
block gets filled with background colour) is determined by the bit values of
remaining portion of digest (l). This remaining portion of digest can also
be seen as a list of bits. The bit positions would range from 0 to b
(where the size of b would depend on the digest algoirthm that was picked).

Since the identicon needs to be symmetrical, the number of blocks for which the
fill colour needs to be calculated is equal to rows * (columns / 2 + columns %
2). I.e. the block matrix is split in half vertically (if number of columns is
odd, the middle column is included as well).

Those blocks can then be marked with whole numbers from 0 to c (where
c would be equal to the above formula - rows * (columns / 2 + columns %
2)). Number 0 would correspond to first block of the first half-row, 1
to the first block of the second row, 2 to the first block of the third row,
and so on to the first block of the last half-row. Then the blocks in the next
column would be indexed with numbers in a similar (incremental) way.

With these two numbering methods in place (for digest bits and blocks of
half-matrix), every block is assigned a bit that has the same position number.

If no inversion of foreground and background colours was requested, bit value of
1 for a cell would mean the block should be filled with foreground colour,
while value of 0 would mean the block should be filled with background
colour.

If an inverted identicon was requested, then 1 would correspond to
background colour fill, and 0 would correspond to foreground colour fill.

Examples

An identicon should be created with the following parameters:

	Size of identicon in blocks is 5 x 5 (a square).

	Digest algorithm is MD5.

	Five colours are used for identicon foreground (0 through 4).

	Some background colour is selected (marked as b).

	Foreground and background colours are not to be inverted (swapped).

	Data used for digest is branko.

MD5 digest for data (branko) would be (reperesented as hex value) equal to
d41c0e80c44173dcf7575745bdddb704.

In other words, 16 bytes would be present with the following hex values:

d4 1c 0e 80 c4 41 73 dc f7 57 57 45 bd dd b7 04

Following the algorithm, the first byte (d4) is used to determine which
foreground colour to use. d4 is equal to 212 in decimal format. Divided
by modulo 5 (number of foreground colours), the resulting index of
foreground colour is 2 (third colour in the foreground list).

The remaining 15 bytes will be used for figuring out the layout. The
representation of those bytes in binary format would look like this (5 bytes per
row):

00011100 00001110 10000000 11000100 01000001
01110011 11011100 11110111 01010111 01010111
01000101 10111101 11011101 10110111 00000100

Since identicon consits out of 5 columns and 5 rows, the number of bits that’s
needed from l for the layout would be 5 * (5 / 2 + 5 % 2) == 15. This
means that the following bits will determine the layout of identicon (whole
first byte, and 7 bits of the second byte):

00011100 0000111

The half-matrix would therefore end-up looking like this (5 bits per column for
5 blocks per column):

010
000
001
101
101

The requested identicon is supposed to have 5 block columns, so a reflection
will be applied to the first and second column, with third column as center of
the symmetry. This would result in the following ideticon matrix:

01010
00000
00100
10101
10101

Since no inversion was requested, 1 would correspond to calculated
foreground colour, while 0 would correspond to provided background colour.

To spicen the example up a bit, here is what the above identicon would look like
in regular and inverted variant (with some sample foreground colours and a bit
of padding):

[image: _images/branko.png]
[image: _images/branko_inverted.png]

Limitations

There’s some practical limitations to the algorithm described above.

The first limitation is the maximum number of different foreground colours that
can be used for identicon generation. Since a single byte (which is used to
determining the colour) can represent 256 values (between 0 and 255), there can
be no more than 256 colours passed to be used for foreground of the
identicon. Any extra colours passed above that count would simply be ignored.

The second limitation is that the maximum dimensions (in blocks) of a generated
identicon depend on digest algorithm used. In order for a digest algorithm to be
able to satisfy requirements of producing an identcion with rows number of
rows, and columns number of columns (in blocks), it must be able to produce at
least the following number of bits (i.e. the number of bits equal to the number
of blocks in the half-matrix):

rows * (columns / 2 + columns % 2) + 8

The expression is the result of vertical symmetry of identicon. Only the
columns up to, and including, the middle one middle one ((columns / 2 + colums
% 2)) need to be processed, with every one of those columns having row
rows (rows *). Finally, an extra 8 bits (1 byte) are necessary for
determining the foreground colour.

 Copyright 2013, Branko Majic.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pydenticon 0.2 documentation

Privacy

It is fundamentally important to understand the privacy issues if using
Pydenticon in order to generate uniquelly identifiable avatars for users leaving
the comments etc.

The most common way to expose the identicons is by having a web application
generate them on the fly from data that is being passed to it through HTTP GET
requests. Those GET requests would commonly include either the raw data, or data
as hex string that is then used to generate an identicon. The URLs for GET
requests would most commonly be made as part of image tags in an HTML page.

The data passed needs to be unique in order to generate distinct identicons. In
most cases the data used will be either name or e-mail address that the visitor
posting the comment fills-in in some field. That being said, e-mails usually
provide a much better identifier than name (especially if the website verifies
the comments through by sending-out e-mails).

Needless to say, in such cases, especially if the website where the comments are
being posted is public, using raw data can completely reveal the identity of the
user. If e-mails are used for generating the identicons, the situation is even
worse, since now those e-mails can be easily harvested for spam purposes. Using
the e-mails also provides data mining companies with much more reliable user
identifier that can be coupled with information from other websites.

Therefore, it is highly recommended to pass the data to web application that
generates the identicons using hex digest only. I.e. never pass the raw
data.

Although passing hash instead of real data as part of the GET request is a good
step forward, it can still cause problems since the hashses can be collected,
and then used in conjunction with rainbow tables to identify the original
data. This is particularly problematic when using hex digests of e-mail
addresses as data for generating the identicon.

There’s two feasible approaches to resolve this:

	Always apply salt to user-identifiable data before calculating a hex
digest. This can hugely reduce the efficiency of brute force attacks based on
rainbow tables (althgouh it will not mitigate it completely).

	Instead of hashing the user-identifiable data itself, every time you need to
do so, create some random data instead, hash that random data, and store it
for future use (cache it), linking it to the original data that it was
generated for. This way the hex digest being put as part of an image link into
HTML pages is not derived in any way from the original data, and can therefore
not be used to reveal what the original data was.

Keep in mind that using identicons will inevitably still allow people to track
someone’s posts across your website. Identicons will effectively automatically
create pseudonyms for people posting on your website. If that may pose a
problem, it might be better not to use identicons at all.

Finally, small summary of the points explained above:

	Always use hex digests in order to retrieve an identicon from a server.

	Instead of using privately identifiable data for generating the hex digest,
use randmoly generated data, and associate it with privately identifiable
data. This way hex digest cannot be traced back to the original data through
brute force or rainbow tables.

	If unwilling to generate and store random data, at least make sure to use
salt when hashing privately identifiable data.

 Copyright 2013, Branko Majic.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pydenticon 0.2 documentation

API Reference

	
class pydenticon.Generator(rows, columns, digest=<built-in function openssl_md5>, foreground=['#000000'], background='#ffffff')

	Factory class that can be used for generating the identicons
deterministically based on hash of the passed data.

Resulting identicons are images of requested size with optional padding. The
identicon (without padding) consists out of M x N blocks, laid out in a
rectangle, where M is the number of blocks in each column, while N is number
of blocks in each row.

Each block is a smallself rectangle on its own, filled using the foreground or
background colour.

The foreground is picked randomly, based on the passed data, from the list
of foreground colours set during initialisation of the generator.

The blocks are always laid-out in such a way that the identicon will be
symterical by the Y axis. The center of symetry will be the central column
of blocks.

Simply put, the generated identicons are small symmetric mosaics with
optional padding.

	
generate(data, width, height, padding=(0, 0, 0, 0), output_format='png', inverted=False)

	Generates an identicon image with requested width, height, padding, and
output format, optionally inverting the colours in the indeticon
(swapping background and foreground colours) if requested.

Arguments:

data - Hashed or raw data that will be used for generating the
identicon.

width - Width of resulting identicon image in pixels.

height - Height of resulting identicon image in pixels.

padding - Tuple describing padding around the generated identicon. The
tuple should consist out of four values, where each value is the
number of pixels to use for padding. The order in tuple is: top,
bottom, left, right.

output_format - Output format of resulting identicon image. Supported
formats are: “png”, “ascii”. Default is “png”.

inverted - Specifies whether the block colours should be inverted or
not. Default is False.

Returns:

Byte representation of an identicon image.

 Copyright 2013, Branko Majic.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pydenticon 0.2 documentation

Testing

Pydenticon includes a number of unit tests which are used for regression
testing. The tests are fairly comprehensive, and also include comparison of
Pydenticon-generated identicons against a couple of samples generated by Sigil.

Tests depend on the following additional libraries:

	Mock [https://pypi.python.org/pypi/mock/]

Test dependencies will be automatically downloaded when running the tests if
they’re not present.

Pydenticon tests can be run with the following command:

python setup.py test

 Copyright 2013, Branko Majic.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Pydenticon 0.2 documentation

Release Notes

0.2

A small release that adds support for Python 3 in addition to Python 2.7.

New features:

	PYD-5: Add support for Python 3.x [https://projects.majic.rs/pydenticon/issues/PYD-5]

Support for Python 3.x, in addition to Python 2.7.

0.1.1

This is a very small release feature-wise, with a single bug-fix.

New features:

	PYD-3: Initial tests [https://projects.majic.rs/pydenticon/issues/PYD-3]

Unit tests covering most of the library functionality.

Bug fixes:

	PYD-4: Identicon generation using pre-hashed data raises ValueError [https://projects.majic.rs/pydenticon/issues/PYD-4]

Fixed some flawed logic which prevented identicons to be generated from
existing hashes.

0.1

Initial release of Pydenticon. Implemented features:

	Supported parameters for identicon generator (shared between multiple
identicons):
* Number of blocks in identicon (rows and columns).
* Digest algorithm.
* List of foreground colours to choose from.
* Background colour.

	Supported parameters when generating induvidual identicons:
* Data that should be used for identicon generation.
* Width and height of resulting image in pixels.
* Padding around identicon (top, bottom, left, right).
* Output format.
* Inverted identicon (swaps foreground with background).

	Support for PNG and ASCII format of resulting identicons.

	Full documentation covering installation, usage, algorithm, privacy. API
reference included as well.

 Copyright 2013, Branko Majic.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Pydenticon 0.2 documentation

 Python Module Index

 p

 			

 		
 p	

 	
 	
 pydenticon	

 Copyright 2013, Branko Majic.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Pydenticon 0.2 documentation

Index

 G
 | P

G

 	

 	generate() (pydenticon.Generator method)

 	

 	Generator (class in pydenticon)

P

 	

 	pydenticon (module)

 Copyright 2013, Branko Majic.
 Created using Sphinx 1.2.2.

 _static/down.png

_static/ajax-loader.gif

_images/branko.png

_images/pydenticon.png

_images/pydenticon_inverted.png

_images/branko_inverted.png

_static/minus.png

_static/comment.png

_static/up.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Pydenticon 0.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Branko Majic.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/comment-close.png

_static/file.png

_static/up-pressed.png

_static/comment-bright.png

_static/logo.png

_static/down-pressed.png

